Циклы в c++

Определения

Последовательность инструкций, предназначенная для многократного исполнения, называется телом цикла. Единичное выполнение тела цикла называется итерацией. Выражение, определяющее, будет в очередной раз выполняться итерация или цикл завершится, называется условием выхода или условием окончания цикла (либо условием продолжения в зависимости от того, как интерпретируется его истинность — как признак необходимости завершения или продолжения цикла). Переменная, хранящая текущий номер итерации, называется счётчиком итераций цикла или просто счётчиком цикла. Цикл не обязательно содержит счётчик, счётчик не обязан быть один — условие выхода из цикла может зависеть от нескольких изменяемых в цикле переменных, а может определяться внешними условиями (например, наступлением определённого времени), в последнем случае счётчик может вообще не понадобиться.

Исполнение любого цикла включает первоначальную инициализацию переменных цикла, проверку условия выхода, исполнение тела цикла и обновление переменной цикла на каждой итерации. Кроме того, большинство языков программирования предоставляет средства для досрочного управления циклом, например, операторы завершения цикла, то есть выхода из цикла независимо от истинности условия выхода (в языке Си — ) и операторы пропуска итерации (в языке Си — ).

Что ещё «умеет» цикл for?

Цикл for способен обходить любой итератор Python. Мы видели особенности действия цикла при обработке списка и последовательности. А теперь взглянем, можно ли его использовать для выполнения итерации со словарём:

a_dict = {"one"1, "two"2, "three"3}
 for key in a_dict
    print(key)

Если использовать for в словаре, легко заметить, что он перебирает ключи автоматически. К примеру, не нужно указывать for в a_dict.keys() (хотя это тоже работает). Python делает только то, что необходимо. Да, ключи выводятся в несколько другом порядке, который отличен от указанного в словаре. Однако словари не упорядочены, поэтому можно использовать итерацию над ними, а ключи при этом м. б. в любом порядке. Если вы знаете, что ключи можно отсортировать, это лучше сделать до итерации. Чтобы увидеть, как это работает, немного изменим словарь:

a_dict = {1"one", 2"two", 3"three"}
keys = a_dict.keys()
keys = sorted(keys)
for key in keys
    print(key)

Результат использования данного цикла for в Python следующий:

1
2
3

Давайте разберём код данного цикла for подробнее. Во-первых, был создан словарь, где ключи выступают вместо строк в качестве целых чисел. Во-вторых, мы извлекли из словаря ключи. Каждый раз при вызове метода keys(), он возвращает нам неупорядоченный список ключей. И если при выводе списка мы видим, что они находятся в прямом либо обратном порядке, это просто случайность.

Итак, получен доступ к ключам, хранимым в keys. Мы сортируем список, после чего нужно использовать цикл for в нём. Чтобы сделать процесс интереснее, попробуем использовать цикл for в функции range, однако для этого потребуется вывести лишь целые числа. Дабы это осуществить, придётся использовать условный оператор, а не параметр шага range, что делается так:

for number in range(10):
    if number % 2 == 
        print(number)

Результат работы цикла for таков:

2
4
6
8

Возможно, не все поняли, что происходит и откуда в цикле знак процента. Если кто подзабыл, в Python, % — это оператор модуля. Когда его используют, возвращается остаток. При делении целого числа на 2, остатка, разумеется, нет.

После разговора о цикле for пришла пора познакомиться с циклом while.

Циклы

Последнее обновление: 19.06.2017

Циклы являются управляющими конструкциями, позволяя в зависимости от определенных условий выполнять некоторое действие множество раз. В
C# имеются следующие виды циклов:

  • for

  • foreach

  • while

  • do…while

Цикл for

Цикл for имеет следующее формальное определение:

for (; ; )
{
    // действия
}

Рассмотрим стандартный цикл for:

for (int i = 0; i < 9; i++)
{
    Console.WriteLine($"Квадрат числа {i} равен {i*i}");
}

Первая часть объявления цикла — — создает и инициализирует счетчик i. Счетчик необязательно должен представлять тип
int. Это может быть и другой числовой тип, например, float. И перед выполнением цикла его значение будет равно 0. В данном
случае это то же самое, что и объявление переменной.

Вторая часть — условие, при котором будет выполняться цикл. Пока условное выражение возвращает true, будет выполняться цикл.
В данном случае цикл будет выполняться, пока счетчик i не достигнет 9.

И третья часть — приращение счетчика на единицу. Опять же нам необязательно увеличивать на единицу. Можно уменьшать: .

В итоге блок цикла сработает 9 раз, пока значение i не станет равным 9. И каждый раз это значение будет увеличиваться на 1.

Нам необязательно указывать все условия при объявлении цикла. Например, мы можем написать так:

int i = 0;
for (; ;)
{
	Console.WriteLine($"Квадрат числа {++i} равен {i * i}");
}

Формально определение цикла осталось тем же, только теперь блоки в определении у нас пустые: . У нас нет
инициализированной переменной-счетчика, нет условия, поэтому цикл будет работать вечно — бесконечный цикл.

Мы также можем опустить ряд блоков:

int i = 0;
for (; i<9;)
{
	Console.WriteLine($"Квадрат числа {++i} равен {i * i}");
}

Этот пример по сути эквивалентен первому примеру: у нас также есть счетчик, только создан он вне цикла. У нас есть условие выполнения цикла.
И есть приращение счетчика уже в самом блоке for.

Цикл do

В цикле do сначала выполняется код цикла, а потом происходит проверка условия в инструкции while. И пока это условие истинно,
цикл повторяется. Например:

int i = 6;
do
{
    Console.WriteLine(i);
    i--;
}
while (i > 0);

Здесь код цикла сработает 6 раз, пока i не станет равным нулю

Но важно отметить, что цикл do гарантирует хотя бы единократное выполнение действий,
даже если условие в инструкции while не будет истинно. То есть мы можем написать:

int i = -1;
do
{
    Console.WriteLine(i);
    i--;
}
while (i > 0);

Хотя у нас переменная i меньше 0, цикл все равно один раз выполнится.

Цикл while

В отличие от цикла do цикл while сразу проверяет истинность некоторого условия, и если условие истинно, то код цикла выполняется:

int i = 6;
while (i > 0)
{
    Console.WriteLine(i);
    i--;
}

Операторы continue и break

Иногда возникает ситуация, когда требуется выйти из цикла, не дожидаясь его завершения. В этом случае мы можем воспользоваться оператором
break.

Например:

for (int i = 0; i < 9; i++)
{
    if (i == 5)
        break;
    Console.WriteLine(i);
}

Хотя в условии цикла сказано, что цикл будет выполняться, пока счетчик i не достигнет значения 9, в реальности цикл сработает 5 раз.
Так как при достижении счетчиком i значения 5, сработает оператор break, и цикл завершится.

0
1
2
3
4

Теперь поставим себе другую задачу. А что если мы хотим, чтобы при проверке цикл не завершался, а просто пропускал текущую итерацию.
Для этого мы можем воспользоваться оператором continue:

for (int i = 0; i < 9; i++)
{
    if (i == 5)
        continue;
    Console.WriteLine(i);
}

В этом случае цикл, когда дойдет до числа 5, которое не удовлетворяет условию проверки, просто пропустит это число и перейдет к следующей итерации:

0
1
2
3
4
6
7
8

Цикл while

Цикл while хорошо использовать для повторений частей кода. Здесь вместо зацикливания n-е количество раз цикл будет работать, пока не исполнится определённое условие.

Пример работы цикла while в Python:

i = 
while i < 10
    print(i)
    i = i + 1

Цикл while по сути — это один из вложенных условных операторов. Если говорить о коде цикла, который мы решили использовать выше, на экран будет выводиться переменная i до тех пор, пока она меньше десяти. То есть с запуском этого кода в Python вы получите список от 0 до 9, сформированный в прямом, а не обратном порядке, причём каждая цифра выведется в отдельной строке, и цикл завершится.

Однако, удалив часть кода с увеличением значения i, мы получим бесконечный цикл, а это уже плохо. Бесконечные циклы называют логическими ошибками, которых лучше избегать. Но это не значит, что в таком случае нельзя будет «вырваться» из цикла. Можно, если использовать вложенные функции в Python, например, break:

while i < 10
    print(i)
        if i == 5
        break
        i += 1

Узнать больше про Python-циклы вы всегда сможете на наших курсах. Изучайте циклы, списки, функции, классы и другие нюансы «Пайтона» вместе с OTUS!

Зачем нужен else при работе с циклами?

Оператор else в циклах выполняется только в том случае, если цикл выполнен успешно. Главная задача оператора else, это поиск объектов:

Python

my_list =

for i in my_list:
if i == 3:
print(«Item found!»)
break
print(i)
else:
print(«Item not found!»)

1
2
3
4
5
6
7
8
9

my_list=1,2,3,4,5

foriinmy_list

ifi==3

print(«Item found!»)

break

print(i)

else

print(«Item not found!»)

В этом коде мы разорвали цикл, когда i равно 3. Это приводит к пропуску оператора else. Если вы хотите провести эксперимент, вы можете изменить условное выражение, чтобы посмотреть на значение, которое находится вне списка, и которое приведет оператор else к выполнению. Честно, ни разу не видел, чтобы кто-либо использовал данную структуру за все годы работы. Большая часть примеров, которые я видел, приведена блогерами, которые пытаются объяснить, как это работает. Я видел несколько людей, которые использовали эту структуру для провоцирования ошибки, когда объект не удается найти в искомом цикле. Вы можете почитать статью, в которой вопрос рассматривается весьма детально. Статья написана одним из разработчиков ядра Python.

Циклы с несколькими охраняемыми ветвями

Цикл Дейкстры

В теории программирования известна ещё одна, принципиально отличающаяся от «классических», форма циклической конструкции, получившая название «цикл Дейкстры», по имени Эдсгера Дейкстры, впервые её описавшего. В классическом дейкстровском описании такой цикл выглядит следующим образом:

 do
   P1 → S1,
     …
   Pn → Sn
 od

Здесь  — маркер начала конструкции цикла,  — маркер завершения конструкции цикла, Pi — iохраняющее условие (логическое выражение, которое может иметь значение «истинно» или «ложно»), Si — iохраняемая команда. Цикл состоит из одной или нескольких ветвей (охраняемых выражений), каждая из которых представляет собой пару из охраняющего условия (или, коротко, «охраны») и охраняемой команды (понятно, что в реальности команда может быть сложной).

При выполнении цикла Дейкстры в каждой итерации происходит вычисление охраняющих условий. Если хотя бы одно из них истинно, выполняется соответствующая охраняемая команда, после чего начинается новая итерация (если истинны несколько охраняющих условий, выполняется только одна охраняемая команда). Если все охраняющие условия ложны, цикл завершается. Нетрудно заметить, что цикл Дейкстры с одним охраняющим условием и одной охраняемой командой представляет собой, по сути, обычный цикл с предусловием (цикл «пока»).

Хотя цикл Дейкстры был изобретён ещё в 1970-х годах, специальных конструкций для его создания в языках программирования не содержится. Единственным исключением стал недавно созданный  — первый реальный язык программирования, явно поддерживающий цикл с несколькими охраняемыми ветвями. Впрочем, цикл Дейкстры может быть без больших затруднений смоделирован с помощью традиционных конструкций структурных языков программирования. Вот пример его реализации одним из возможных способов на языке Ада:

loop
  if P1 then 
    S1;
    ...
  elsif Pn then 
    Sn;
  else
    exit;
  end if;
end loop;

Здесь P1—Pn — охраняющие условия, а S1—Sn — соответствующие охраняемые команды.

Цикл Дейкстры удобен при реализации некоторых специфических повторяющихся вычислений, которые неудобно описывать с помощью более традиционных циклических конструкций. Например, этим циклом естественно представляется конечный автомат — каждая ветвь соответствует одному состоянию автомата, охраняемые условия строятся так, чтобы в текущей итерации выбиралась ветвь, соответствующая текущему состоянию автомата, а код охраняемой команды обеспечивает выполнение вычислений в текущем состоянии и переход в следующее (то есть такое изменение переменных, после которого на следующей итерации будет истинным охраняющее условие нужной ветви).

Цикл «паук»

Легко видеть, что цикл Дейкстры не содержит явного условия продолжения или выхода, что не всеми теоретиками программирования рассматривается как благо. Поэтому была предложена усложнённая конструкция цикла Дейкстры, получившая название «цикл-‘паук’». В той же нотации она выглядит следующим образом:

 do
   P1→S1,
     …
   Pn→Sn
 out
   Q1→T1,
     …
   Qn→Tn
 else
   E
 od

Здесь после маркера добавлены ветви завершения, состоящие из условий выхода Qi и команд завершения Ti. Кроме того, добавлена ветвь альтернативного завершения с командой E.

Цикл-‘паук’ выполняется так:

  • Вычисляются охраняющие условия. Если существует истинное охраняющее условие, выполняется соответствующая охраняемая команда.
  • Вычисляются условия выхода. Если существует истинное условие выхода, выполняется соответствующая команда завершения, после чего выполнение цикла заканчивается. Если все условия выхода ложны, начинается следующая итерация, но только в том случае, если в текущей итерации было истинным хотя бы одно из охраняющих условий.
  • Если в данной итерации оказались ложными и все охраняющие условия, и все условия выхода, выполняется команда альтернативного завершения E, после чего выполнение цикла прерывается.

Структура цикла-‘паука’ позволяет предельно строго описать условия выполнения цикла. Согласно теоретическим положениям, ветвь альтернативного завершения не должна использоваться в качестве одного из вариантов корректного прекращения работы цикла (все такие варианты должны быть оформлены в виде соответствующих ветвей завершения с явным условием), она служит только для того, чтобы отследить ситуацию, когда по каким-то причинам цикл начал выполняться нештатно. То есть команда альтернативного завершения может лишь анализировать причины ошибки и представлять результаты анализа.

Хотя явной поддержки на уровне синтаксиса для этого цикла не существует ни в одном языке программирования, цикл-‘паук’, как и цикл Дейкстры, может быть смоделирован с помощью традиционных структурных конструкций.

Сложные задачи

1. Дано целое число N (> 1). Найти наименьшее целое число K, при котором выполняется неравенство 3^K > N, где 3^K — это 3 в степени K или число 3, умноженное само на себя K раз. Например, 3^5 = 3*3*3*3*3. Ответом в задаче будет первая степень числа 3, которая больше, чем заданное число N. Например, если N=41, распишем степени числа три: 3^1 = 3; 3^2 = 3*3 = 9; 3^3 = 3*3*3 = 27; 3^4 = 3*3*3*3 = 27 * 3 = 81;. Таким образом, первая степень, в которую возвести число 3, превышающая число N — это 4. В этой задаче нужно выполнять цикл while, пока остаток от деления на число три равен

2. Дано целое число N (> 0). Используя операции деления нацело и взятия остатка от деления, вывести все его цифры, начиная с самой правой (разряда единиц). Перед решением этой задачи вспомните, как найти сумму цифр трехначного числа.

3. Даны целые положительные числа A и B. Найти их наибольший общий делитель (НОД), используя алгоритм Евклида: НОД(A, B) = НОД(B, A mod B), если B = 0; НОД(A, 0) = A.

4. Спортсмен-лыжник начал тренировки, пробежав в первый день 10 км. Каждый следующий день он увеличивал длину пробега на P процентов от пробега предыдущего дня (P — вещественное, 0

5. Дано целое число N (> 1). Последовательность чисел Фибоначчи FK определяется следующим образом: F(1) = 1, F(2) = 1, F(K) = F(K-2) + F(K-1), K = 3, 4, …. Проверить, является ли число N числом Фибоначчи. Если является, то вывести TRUE, если нет — вывести FALSE.

6. Даны положительные числа A, B, C. На прямоугольнике размера A x B размещено максимально возможное количество квадратов со стороной C (без наложений). Найти количество квадратов, размещенных на прямоугольнике. Операции умножения и деления не использовать.

7. Дано целое число N (> 1), являющееся числом Фибоначчи: N = F(K). Найти целое число K — порядковый номер числа Фибоначчи N.

Цикл for-in

Цикл используется для перебора в случайном порядке перечисляемых свойств объекта и имеет следующий синтаксис:

for (переменная in объект)
  инструкция;

Слева от ключевого слова указывается имя переменной, которой перед началом каждой итерации цикла присваивается в виде строки имя одного из свойств объекта. Справа от ключевого слова указывается объект, свойства которого будут перебираться циклом. Цикл будет выполняться до тех пор, пока не будут перебраны все доступные свойства. Если переменная, представляющая объект, будет иметь значение или цикл не выполнится ни разу:

var obj = {x: 5, y: 10};

for (var prop in obj) {
  alert(prop);
}

Чтобы связанный с циклом код был в одном месте, в цикле допускается объявлять переменную. Поэтому, в качестве выражения перед ключевым словом обычно выступает объявление переменной, которой будут присваиваться имена свойств.

С этой темой смотрят:

  • Инструкции break и continue
  • Метки инструкций
  • Выражения и инструкции
  • Преобразование типов данных

While в Паскале — цикл с предусловием

Пример: Определить количество цифр в введенном целом числе, не превышающем 2000000.

Алгоритм: Отделяем и удаляем последовательно последнюю цифру, наращивая счетчик.

n счетчик
246
24 1
2 2
3

В чем сложность?: Заранее не определено и неизвестно, сколько цифр нужно убрать, т.е. сколько шагов необходимо сделать.Как выполнить: Надо перестать отделять цифры, когда n = 0, т.е. надо выполнять пока n > 0

Блок-схема решения:

Блок-схема решения

Решение примера на Паскале:
Цикл в Паскале применяется для создания повторений с неизвестным заранее их числом. Повторения () будут осуществляться, пока истинно некоторое условие.

Блок-схема, соответствующая циклу while в Паскале:

  • Здесь оператор, стоящий после служебного слова , образует тело цикла и будет выполняться, пока значение равно (истина).
  • Если операторов должно быть несколько, тогда необходимо применять .
  • Условие пересчитывается каждый раз при входе в цикл.
  • Непосредственно цикла может быть переменная или .
  • Операторы тела цикла выполнятся только в том случае, если условие будет истинно, если условие ложно — они игнорируются, и программа продолжается с тех операторов, которые стоят уже после конструкции. Таким образом, это существенное отличие цикла с предусловием от .

Рассмотрим использование цикла в Паскале на решенном примере:

Пример: Печатать «ноль» указанное количество раз

Показать решение:

1
2
3
4
5
6
7
8
9
10
var i,ninteger;
begin
write ('kolichestvo znakov');
readln(n);
i=1;
while i<=n do begin {составной оператор}
  write();
  i=i+1
end;
end.

Задача 3. Ввести целое число и найти сумму его цифр.Пример:

Введите целое число:
1234
Сумма цифр числа 1234 равна 10.

Можно использовать сложные условия:

Задача 4. Вычислять с использованием цикла while квадратные корни из чисел 900, 893, 886, 879 и т.д. до тех пор, пока это можно делать.

Детальный разбор работы цикла While в Паскале рассмотрен в видеоуроке:

Пример: найти сумму всех элементов последовательности:


которые по модулю больше 0,001:

Алгоритм:

Блок-схема решения:

Блок-схема решения

Решение на Паскале:

Решение на Паскале

Задача 5: Вычислить сумму элементов следующей последовательности с точностью 0,001:

Результат: S = 1.157

Вложенные циклы в Паскале

Существует возможность использования вложенных циклов в Паскале, когда в теле одного цикла вместо оператора стоит другой цикл.

Важно: Главным обстоятельством во вложенных циклах является использование разных переменных для счетчиков внутреннего и внешнего циклов

Рассмотрим пример:

Пример: Вывести таблицу умножения, используя вложенные циклы в паскале.

Показать решение:

1
2
3
4
5
6
7
8
9
10
const n = 9;            {размер таблицы}
var i, j integer;
begin
   for i=1 to n do    {номера строк}
   begin
     for j=1 to n do  {номера столбцов}
       write(i*j4);
     writeln;              {переход на новую строку}
   end;
end.

Переход к следующей итерации: continue

Директива – «облегчённая версия» . При её выполнении цикл не прерывается, а переходит к следующей итерации (если условие все ещё равно ).

Её используют, если понятно, что на текущем повторе цикла делать больше нечего.

Например, цикл ниже использует , чтобы выводить только нечётные значения:

Для чётных значений , директива прекращает выполнение тела цикла и передаёт управление на следующую итерацию (со следующим числом). Таким образом вызывается только для нечётных значений.

Директива позволяет избегать вложенности

Цикл, который обрабатывает только нечётные значения, мог бы выглядеть так:

С технической точки зрения он полностью идентичен. Действительно, вместо можно просто завернуть действия в блок .

Однако мы получили дополнительный уровень вложенности фигурных скобок. Если код внутри более длинный, то это ухудшает читаемость, в отличие от варианта с .

Нельзя использовать справа от оператора „?“

Обратите внимание, что эти синтаксические конструкции не являются выражениями и не могут быть использованы с тернарным оператором. В частности, использование таких директив, как , вызовет ошибку

Например, если мы возьмём этот код:

…и перепишем его, используя вопросительный знак:

…то будет синтаксическая ошибка.

Это ещё один повод не использовать оператор вопросительного знака вместо .

Синтаксис цикла while

В самом простом случае, цикл в python очень похож по своей структуре на условную конструкцию с

И в том и в другом случае, блок кода внутри (инструкция ) будет исполнен тогда и только тогда, когда условие будет иметь значение . Вот только в конструкции с , при успешной проверке, вывод на экран будет выполнен всего один раз, а в случае с фраза «I’m the loop» будет печататься бесконечно.

Такое явление называется бесконечным циклом. У них есть свои определенные смысл и польза, но их мы разберём чуть позже, поскольку чаще всего цикл всё-таки должен как-то заканчиваться. И вполне логично, что для его завершения нужно произвести определенные манипуляции с условием.

Переменная , в примере выше, называется управляющей (или счетчик). При помощи таких переменных можно контролировать момент выхода из цикла. Для этого их следует сравнить с каким-либо значением.

В Python есть и более сложные, составные условия. Они могут быть сколь угодно длинными, а в их записи используются логические операторы (, , ):

Как можно заметить, управляющая переменная вовсе не обязана являться счётчиком. Она может быть просто логической переменной, чье значение изменяется где-то в самом цикле:

Стоит иметь в виду, что использование неинициализированной переменной в качестве управляющей цикла обязательно приведёт к возникновению ошибки:

Оператор цикла do while

Последний
оператор цикла, который мы рассмотрим – это цикл do while. Он имеет
следующий синтаксис:

do {

}
while(<условие цикла>);

Отличие этого
цикла от двух предыдущих в том, что он сначала выполняет тело цикла, и только
потом проверяет условие цикла. Когда используется такая реализация? Например,
мы вводим с клавиатуры некий код и будем продолжать выполнение программы только
после того, как пользователь введет верный код. Своего рода проверка пароля.
Запишем эту программу.

final int secret_code = 13;
int code_ent;
 
Scanner in = new Scanner(System.in);
 
do {
    System.out.print("Введите секретный код : ");
    code_ent = in.nextInt();
} while (code_ent != secret_code);
 
 
System.out.println("Вы ввели верный код!");
in.close();

Здесь вначале
задается константа в виде целочисленной переменной со значением 13. Это тот
код, который и должен ввести пользователь. Затем, выполняется тело цикла, в
котором пользователю предлагается ввести код. Если введенный код не будет равен
заданному, то условие цикла do while будет истинным и
он продолжится, то есть, пользователю будет предложено снова ввести код. Это
будет продолжаться до тех пор, пока пользователь не введет число 13. Тогда
условие цикла окажется ложным и программа перейдет к следующему оператору. Вот
так работает этот цикл.

Интересные факты о работе с циклами

Управляющие команды в теле цикла

continue.

  • continue – прекращает выполнение тела текущего цикла и осуществляет переход к логическому выражению оператора while. Если вычисленное выражение будет истинно – выполнение цикла будет продолжено.
  • break – немедленно прекращает выполнение текущего цикла и осуществляет переход к первой команде за его пределами. Таким образом, выполнение текущего цикла прерывается. Подробнее мы рассмотрим её в следующей теме.

Вспомним про наш фруктовый пример. Если мы не уверены в качестве предложенных яблок, то могли бы изменить код с применением команды :

Конструкцию часто применяют, когда в теле цикла необходимо выполнять команды при наступлении некоторого условия, например, выполнить действия при срабатывании датчика в оборудовании (а иначе просто продолжить цикл считывания его показателей) или вычислить выражение только на определенных шагах цикла. Пример для последнего случая – вычисление в цикле while суммы кубов натуральных чисел, у которых квадрат меньше их количества:

Бесконечный цикл

Данные управляющие команды чаще всего находят применение в бесконечном цикле. Его так называют, потому что логическое условие выхода никогда не выполняется. В коде он выглядит примерно как:

В этом случае и пригодится применение команды для организации выхода из него. Этот вид цикла имеет место при ожидании внешних условий, которые формируются за пределами логики тела цикла. Например, в играх, эмулирующих виртуальный мир вокруг героя (выход из цикла = выход из игры), операционных системах. Или при использовании алгоритмов, возможно, улучшающих результат с каждым последующим вызовом в цикле, но ограничивая их по времени или наступлению внешнего события (шашки, шахматы или предсказание погоды). Следует помнить, что в обычных условиях бесконечные циклы – одна из проблем неустойчивости программы.

Для демонстрации вернёмся к степеням числа:

Результат вывода на консоль:

Вложенные циклы

Вот мы и подошли к завершающей теме о наших циклах. Вспомним о яблочном пироге (надеюсь, вы не голодны в данный момент) и наш «цикл»:

  1. Если в тазике есть яблоки, выполняем шаги с 1.1 по 1.4:

    1. 1.1. Берем яблоко
    2. 1.2. Чистим и нарезаем его дольками
    3. 1.3. Помещаем на основание пирога из теста на сковороде
    4. 1.4. Возвращаемся на шаг 1.

Подробнее распишем процесс нарезания дольками:

  1. Число долек = 0
  2. Пока число долек < 12, выполнить шаги с 2.1 по 2.3

    1. 2.1. Отрезать очередную дольку от яблока
    2. 2.2. Кол-во долек ++
    3. 2.3. Возвращаемся на шаг 2

И вставим в наш кондитерский алгоритм:

  1. Если в тазике есть яблоки, то выполняем шаги с 1.1 по 1.6:

    1. 1.1. Берем яблоко
    2. 1.2. Очищаем его от кожуры
    3. 1.3. Число долек = 0
    4. 1.4. Пока число долек < 12, выполнить шаги с 1.4.1 по 1.4.3
      1. 1.4.1. Отрезать очередную дольку от яблока
      2. 1.4.2. Кол-во долек ++
        1.4.3. Возвращаемся на шаг 1.4
    5. 1.5. Помещаем дольки на тестовое основание пирога из теста на сковороде
    6. 1.6. Возвращаемся на шаг 1.

Получили цикл в цикле. Подобные конструкции весьма частые.

Для завершающего примера построим таблицу умножения, которые школьники 90-х видели на обложках тетрадей в младших классах.

Результат вывода на консоль:

Циклы (в частности, оператор while) – один из фундаментальных кирпичиков построения программ. Решая задачи на JavaRush, вы изучите все их разнообразие, разберёте тонкости функционирования и получите практические навыки их применения.

Бесконечный цикл while на С#

Сделать бесконечный цикл while также легко, как и for. У данного цикла будет иметься условие, в отличие от цикла for, однако это условие никогда не измениться и из-за этого цикл никогда не прекратит свою работу.

namespace infinite_loop
{
class Program
{
static void Main(string[] args)
{
int i = 0;
while (true)
{
i++;
Console.WriteLine(i);
}
}
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

namespaceinfinite_loop

{

classProgram

{

staticvoidMain(stringargs)

{

inti=;

while(true)

{

i++;

Console.WriteLine(i);

}

}

}

}

Как мы видим, отличие этой программы от предыдущей имеется лишь в строке 8, где объявляется цикл while и ему присваивается значение true (также можно вместо «true» написать «1», так как для компьютера эти понятия эквивалентны). Цикл будет работать до тех пор, пока это значение не изменится на false (или «0»). Но так как в коде мы нигде больше не меняем это значение, программа продолжает работать бесконечно.

Результат работы программы такой же, как и у предыдущей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector