Math.floor()

Особенность деления на 0 в js

Как известно из уроков по математике, делить на нуль нельзя. Это правило взяли за основу большинство создателей языков программирования. Поэтому при делении на нуль все программы выдают ошибку.

Однако JavaScript отличился и здесь. Так, во время выполнения такой операции никаких сообщений о баге не возникает…потому что такая операция возвращает «Infinity»
!

Почему же так? Как известно из тех же математических наук, чем меньше делитель, тем в результате получается большее число. Именно поэтому создатели данного прототипно-ориентированного языка решили отказаться от шаблонов и пойти своим путем.

Для тех, кто впервые сталкивается со значением Infinity, ниже я объяснил его особенности.

Может быть отрицательной. Также сохраняются все стандартные правила работы с арифметическими операторами.

На этом, пожалуй, и закончу. Если вам понравилась публикация, то обязательно подписывайтесь на мой блог. Не жадничайте ссылкой на интересные статьи и делитесь ими с друзьями. Пока-пока!

Прочитано: 194 раз

Часто вычисления дают результаты, которые не соответствуют пределам нужных диапазонов. В результате нужно осуществлять JavaScript округление
до определенного значения.

Число Пи из библиотеки math

Первой важной математической константой является число Пи (π). Оно обозначает отношение длины окружности к диаметру, его значение 3,141592653589793

Чтобы получить к нему доступ, сначала импортируем библиотеку math следующим образом:

Python

import math

1 importmath

Затем можно получить доступ к константе, вызывая :

Python

math.pi

1 math.pi

Вывод

Shell

3.141592653589793

1 3.141592653589793

Данную константу можно использовать для вычисления площади или длины окружности. Далее представлен пример простого кода, с помощью которого это можно сделать:

Python

import math

radius = 2
print(‘Площадь окружности с радиусом 2 равна:’, math.pi * (radius ** 2))

1
2
3
4

importmath

radius=2

print(‘Площадь окружности с радиусом 2 равна:’,math.pi*(radius**2))

Вывод

Shell

Площадь окружности с радиусом 2 равна: 12.566370614359172

1 Площадьокружностисрадиусом2равна12.566370614359172

Мы возвели радиус во вторую степень и умножили значение на число Пи, как и следовало сделать в соответствии с формулой πr2.

Функция логарифма log() в Python

Функция возвращает логарифм определенного числа. Натуральный логарифм вычисляется относительно основания . В следующем примере показано использование функции логарифма:

Python

import math

print(«math.log(10.43):», math.log(10.43))
print(«math.log(20):», math.log(20))
print(«math.log(math.pi):», math.log(math.pi))

1
2
3
4
5

importmath

print(«math.log(10.43):»,math.log(10.43))

print(«math.log(20):»,math.log(20))

print(«math.log(math.pi):»,math.log(math.pi))

В скрипте выше методу передаются числовые значения с различными типами данных. Также рассчитывается натуральный логарифм константы . Вывод следующий:

Shell

math.log(10.43): 2.344686269012681
math.log(20): 2.995732273553991
math.log(math.pi): 1.1447298858494002

1
2
3

math.log(10.43)2.344686269012681

math.log(20)2.995732273553991

math.log(math.pi)1.1447298858494002

Простые числа в Javascript

Рассмотрим пример в котором выведем с помощью Javascript простые числа от 2 до 100.

// Функция, которая проверяет является ли число простым
function isPrime(value) {
  if (isNaN(value) || !isFinite(value) || value%1 || value < 2) return false; 
  var max=Math.floor(Math.sqrt(value));
  for (var i = 2; i< = max; i++) {
    if (value%i==0) {
      return false;
    }
  }
  return true;
}
// создать массив, который будет содержать простые числа от 2 до 100
var primaryNumber = [];
for (var i = 2; i <= 100; i++) {
  if(isPrime(i)) 
    primaryNumber.push(i);
}
// вывести в консоль простые числа от 2 до 100
console.log(primaryNumber);

Арифметические функции в Python

Арифметические функции используются для представления чисел в различных формах и осуществления над ними математических операций. Далее представлен перечень самых популярных арифметических функций:

  • : округление определенного числа вверх;
  • : возвращает модуль (абсолютное значение) указанного числа;
  • : округление определенного числа вниз;
  • : получение наибольшего общего делителя чисел и ;
  • : возвращает сумму всех элементов итерируемого объекта;
  • : возвращает (e^x)-1;
  • : когда значение слишком мало, вычисление может привести к значительной потери в точности. может вернуть вывод с полной точностью.

В следующем примере показано использование перечисленных выше функций:

Python

import math

num = -4.28
a = 14
b = 8

num_list =
x = 1e-4 # Малое значение x

print(‘Число:’, num)
print(‘Округление числа вниз:’, math.floor(num))
print(‘Округление числа вверх:’, math.ceil(num))
print(‘Модуль числа:’, math.fabs(num))
print(‘Наибольший общий делитель a и b: ‘ + str(math.gcd(a, b)))
print(‘Сумма элементов списка: ‘ + str(math.fsum(num_list)))
print(‘e^x (при использовании функции exp()) равно:’, math.exp(x)-1)
print(‘e^x (при использовании функции expml()) равно:’, math.expm1(x))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

importmath

num=-4.28

a=14

b=8

num_list=10,8.25,75,7.04,-86.23,-6.43,8.4

x=1e-4# Малое значение x

print(‘Число:’,num)

print(‘Округление числа вниз:’,math.floor(num))

print(‘Округление числа вверх:’,math.ceil(num))

print(‘Модуль числа:’,math.fabs(num))

print(‘Наибольший общий делитель a и b: ‘+str(math.gcd(a,b)))

print(‘Сумма элементов списка: ‘+str(math.fsum(num_list)))

print(‘e^x (при использовании функции exp()) равно:’,math.exp(x)-1)

print(‘e^x (при использовании функции expml()) равно:’,math.expm1(x))

Вывод

Python

Число: -4.28
Округление числа вниз: -5
Округление числа вверх: -4
Модуль числа: 4.28
Наибольший общий делитель a и b: 2
Сумма элементов списка: 16.029999999999998
e^x (при использовании функции exp()) равно: 0.0001000050001667141
e^x (при использовании функции expml()) равно: 0.00010000500016667084

1
2
3
4
5
6
7
8

Число-4.28

Округлениечиславниз-5

Округлениечиславверх-4

Модульчисла4.28

Наибольшийобщийделительaиb2

Суммаэлементовсписка16.029999999999998

e^x(прииспользованиифункцииexp())равно0.0001000050001667141

e^x(прииспользованиифункцииexpml())равно0.00010000500016667084

К числу других математических функций относятся:

  • : принимает два вещественных аргумента, возводит первый аргумент в степень, значением которой является второй аргумент, после чего возвращает результат. К примеру, эквивалентно выражению ;
  • : возвращает квадратный корень определенного числа.

Примеры данных методов представлены ниже:

Возведение в степень

Python

math.pow(3, 4)

1 math.pow(3,4)

Вывод

Shell

81.0

1 81.0

Квадратный корень

Python

math.sqrt(81)

1 math.sqrt(81)

Вывод

Shell

9.0

1 9.0

parseInt и parseFloat

Данные методы
позволяют выделить число из строки, даже если в строке имеются другие не
числовые символы. Например, при работе с CSS часто
встречаются такие выражения: «12pt», «100%», «340px» и прочее. Если
мы попытаемся получить значения с помощью уже знакомых нам подходов:

let arg1 = "12pt";
let arg2 = "100%";
let arg3 = "340px";
 
console.log( Number(arg1) );
console.log( +arg2 );
console.log( +arg3 );

То всюду получим
значение NaN. Но, функии parseInt и parseFloat справляются с
такими задачами. Они преобразовывают строку в число до тех пор, пока либо не
дойдут до конца, либо не встретится ошибка преобразования. В данном случае,
получим всюду правильные числовые значения:

console.log( parseInt(arg1) );
console.log( parseInt(arg2) );
console.log( parseInt(arg3) );

Если же в строке
предполагается вещественное число, то применяется вторая функция:

console.log( parseFloat("12.5pt") );
console.log( parseFloat("  90.5% ") );
console.log( parseFloat("+30.5px") );

Функция parseInt имеет второй
необязательный аргумент, в котором можно указать систему, в которой
представлено число, например:

console.log( parseInt('0xff', 16) ); // 255
console.log( parseInt('aa', 16) ); // 170, можно и без 0x
console.log( parseInt('11011', 2) ); // 27

Конвертация типов числа в Python

Python может конвертировать начальный тип числа в другой указанный тип. Данный процесс называется «преобразованием». Python может внутренне конвертировать число одного типа в другой, когда в выражении присутствуют смешанные значения. Такой случай продемонстрирован в следующем примере:

Python

3 + 5.1

1 3+5.1

Вывод

Shell

8.1

1 8.1

В вышеприведенном примере целое число 3 было преобразовано в вещественное число 3.0 с плавающей точкой. Результатом сложения также является число с плавающей точкой (или запятой).

Однако иногда вам необходимо явно привести число из одного типа в другой, чтобы удовлетворить требования параметра функции или оператора. Это можно сделать с помощью различных встроенных функций Python.

Например, чтобы преобразовать целое число в число с плавающей точкой, мы должны вызвать функцию , как показано ниже:

Python

a = 12
b = float(a)
print(b)

1
2
3

a=12

b=float(a)

print(b)

Вывод

Shell

12.0

1 12.0

Целое число типа было преобразовано в вещественное число типа . также можно конвертировать в следующим образом:

Python

a = 12.65
b = int(a)
print(b)

1
2
3

a=12.65

b=int(a)

print(b)

Вывод

Shell

12

1 12

Вещественное число было преобразовано в целое через удаление дробной части и сохранение базового числа

Обратите внимание, что при конвертации значения в подобным образом число будет усекаться, а не округляться вверх

Заключение

Библиотека Math предоставляет функции и константы, которые можно использовать для выполнения арифметических и тригонометрических операций в Python. Библиотека изначально встроена в Python, поэтому дополнительную установку перед использованием делать не требуется. Для получения дополнительной информации можете просмотреть официальную документацию.

Сравнение дробных чисел

У математических вычислений есть одна особенность — их результат не всегда абсолютно точный. Это проблема
не только JavaScript, но и большинства языков программирования. Так происходит потому, что числа и другие
данные переводятся в двоичный код, и только потом с ними производятся вычисления. В большинстве случаев это
не приводит к особенным трудностям, просто в результате расчётов иногда получается число с большим количеством
знаков после запятой. Но есть ситуация, когда неточность вычислений влияет на работу программы. Это сравнение
чисел. Если сравниваются разные числа, то здесь всё должно быть нормально.

5.1

Но если при вычислении получаются два одинаковых дробных числа, то результат их сравнения не предсказуем.
Они могут быть равны, либо одно может быть больше другого. Когда в скрипте
используется такое сравнение,
то нужно проверять, правильно ли работает скрипт. Если в нём есть ошибка, то нужно округлять значения, которые
сравниваются.

Великий и могучий Math

Глобальный объект Math включает в себя огромное количество разнообразных математических и тригонометрических функций. Это очень нужный объект и часто выручает разработчиков при работе с цифровыми данными.

На других платформах существуют аналогии Math. Например, в таких популярных языках, как Java и C#, Math представляет собой класс, который поддерживает все те же стандартные функции. Так что как видите этот инструмент действительно великий и могучий.

Теперь я хочу пройтись по конкретным методам, отвечающим за округление, и подробно о них рассказать.

Math.floor ()

Начну с Math.
floor

Обратите внимание на наименование метода. Логически становится понятно, что раз речь идет об округлении, а дословный перевод слова «floor» означает «пол», то данный инструмент округлит обрабатываемые значения в меньшую строну

Также возможен вариант, когда обработанное число с помощью этой функции осталось прежним. Все потому, что округление осуществляется по нестрогому неравенству (

в ответе будет число 4.

Math.ceil ()

Опять-таки посмотрите на название (в такой способ материал быстрее усваивается). Если кто-то не знает, то «ceil» означает «потолок». Значит округление числовых данных будет осуществляться в большую сторону, используя нестрогое неравенство (>=).

Как вы уже догадались, в ответе будет число 5.

Math.round ()

Данный метод округляет дробное число до ближайшего целого. Так, если дробная часть находится в диапазоне от 0 и до 0.5 не включительно, то округление происходит к меньшему значению. А если дробная часть находится в диапазоне от включительно 0.5 и до следующего целого числа, то она округляется к большему целому.

Надеюсь, все подумали или сказали правильный ответ – 5.

Объект Math. Математические операции

Последнее обновление: 1.11.2015

Объект Math предоставляет ряд математических функций, которые можно использовать при вычислениях. Рассмотрим основные математические функции.

abs()

Функция возвращает абсолютное значение числа:

var x = -25;
document.write(Math.abs(x)); // 25
var y = 34;
document.write(Math.abs(y)); // 34

min() и max()

Функции и возвращают соответственно минимальное и максимальное значение из набора чисел:

var max = Math.max(19, 45); // 45
var min = Math.min(33, 24); // 24

Эти функции необязательно должны принимать два числа, в них можно передавать и большее количество чисел:

var max = Math.max(1, 2, 3, -9, 46, -23); // 46

ceil()

Функция округляет число до следующего наибольшего целого числа:

var x = Math.ceil(9.2); // 10
var y = Math.ceil(-5.9); // -5

Выражение возвращает число 10, так как число 10 следующее наибольшее целое число после 9.2. И также
выражение возвращает -5, потому что число -5 следующее наибольшее целое после -5.9

floor()

Функция округляет число до следующего наименьшего целого числа:

var x = Math.floor(9.2); // 9
var y = Math.floor(-5.9); // -6

round()

Функция округляет число до следующего наименьшего целого числа, если его десятичная часть меньше 0.5. Если же десятичная
часть равна или больше 0.5, то округление идет до ближайшего наибольшего целого числа:

var x = Math.round(5.5); // 6
var y = Math.round(5.4); // 5
var z = Math.round(-5.4); // -5
var n = Math.round(-5.5); // -5
var m = Math.round(-5.6); // -6
console.log(x);
console.log(y);
console.log(z);
console.log(n);

Функция возвращает случайное число с плавающей точкой их диапазона от 0 до 1:

var x = Math.random();

Функция возвращает число в определенной степени. Например, возведем число 2 в степень 3:

var x = Math.pow(2, 3); // 8

sqrt()

Функция возвращает квадратный корень числа:

var x = Math.sqrt(121); // 11
var y = Math.sqrt(9); // 3
var z = Math.sqrt(20); // 4.47213595499958

Функция возвращает натуральный логарифм числа:

var x = Math.log(1); // 0
var z = Math.log(10); // 2.302585092994046

Тригонометрические функции

Целый ряд функций представляют тригонометрические функции: (вычисляет синус угла),
(вычисляет косинус угла), (вычисляет тангенс угла). В качестве значения они приимают значение в радианах.

var x = Math.sin(Math.PI/2); // 1
var y = Math.cos(0); // 1
var z = Math.tan(Math.PI/4); // 0.9999999999999999
var s = Math.sin(Math.PI/4); // 0.7071067811865476
var c = Math.cos(Math.PI/4); // 0.7071067811865476
console.log(x, y, z, s, c);

Функция вычисляет арксинус числа, — арккосинус, а — арктангенс числа:

var x = Math.asin(0.9); // 1.1197695149986342
var y = Math.acos(1); // 1
var z = Math.atan(1); // 0.7853981633974483

Константы

Кроме методов объект Math также определяет набор встроенных констант, которые можно использовать в различных вычислениях:

  • (число PI): 3.141592653589793

  • (квадратный корень из двух): 1.4142135623730951

  • (половина от квадратного корня из двух): 0.7071067811865476

  • (число e или число Эйлера): 2.718281828459045

  • (натуральный логарифм числа 2): 0.6931471805599453

  • (натуральный логарифм числа 10): 2.302585092994046

  • (двоичный логарифм числа e): 1.4426950408889634

  • (десятичный логарифм числа e): 0.4342944819032518

Используем константы в вычислениях:

var x = Math.log(Math.E); // 1
var z = Math.tan(Math.PI/4); // 0.9999999999999999

НазадВперед

Форматирование чисел

В JavaScript отформатировать вывод числа в соответствии с региональными стандартами (языковыми настройками операционной системы) позволяет метод toLocaleString() .

Например, выполним форматирование числа в соответствии с региональными стандартами, которые установлены в системе по умолчанию:

Var number = 345.46;
console.log(number.toLocaleString()); //»345,46″

Например, выполним форматирование числа в соответствии с региональными стандартами России (ru):

Console.log((108.1).toLocaleString(«ru-RU»)); //»108,1″

Данный метод можно также использовать для форматирования числа в виде валюты:

Console.log((2540.125).toLocaleString(«ru-RU»,{style:»currency», currency:»RUB»})); //»2 540,13 ₽»
console.log((89.3).toLocaleString(«ru-RU»,{style:»currency», currency:»USD»})); //»89,30 $»
console.log((2301.99).toLocaleString(«ru-RU»,{style:»currency», currency:»EUR»})); //»2 301,99 €»

Представление числа в виде процентов:

Console.log((0.45).toLocaleString(«ru-RU»,{style:»percent»})); //»45 %»

Разбить число на разряды (свойство useGrouping):

Console.log((125452.32).toLocaleString(«ru-RU»,{useGrouping:true})); //»125 452,32″

Вывести с число с определённым количеством цифр (2) после запятой:

Console.log((1240.4564).toLocaleString(«ru-RU»,{minimumFractionDigits:2, maximumFractionDigits:2})); //»1 240,46″

JavaScript

JS Array
concat()
constructor
copyWithin()
entries()
every()
fill()
filter()
find()
findIndex()
forEach()
from()
includes()
indexOf()
isArray()
join()
keys()
length
lastIndexOf()
map()
pop()
prototype
push()
reduce()
reduceRight()
reverse()
shift()
slice()
some()
sort()
splice()
toString()
unshift()
valueOf()

JS Boolean
constructor
prototype
toString()
valueOf()

JS Classes
constructor()
extends
static
super

JS Date
constructor
getDate()
getDay()
getFullYear()
getHours()
getMilliseconds()
getMinutes()
getMonth()
getSeconds()
getTime()
getTimezoneOffset()
getUTCDate()
getUTCDay()
getUTCFullYear()
getUTCHours()
getUTCMilliseconds()
getUTCMinutes()
getUTCMonth()
getUTCSeconds()
now()
parse()
prototype
setDate()
setFullYear()
setHours()
setMilliseconds()
setMinutes()
setMonth()
setSeconds()
setTime()
setUTCDate()
setUTCFullYear()
setUTCHours()
setUTCMilliseconds()
setUTCMinutes()
setUTCMonth()
setUTCSeconds()
toDateString()
toISOString()
toJSON()
toLocaleDateString()
toLocaleTimeString()
toLocaleString()
toString()
toTimeString()
toUTCString()
UTC()
valueOf()

JS Error
name
message

JS Global
decodeURI()
decodeURIComponent()
encodeURI()
encodeURIComponent()
escape()
eval()
Infinity
isFinite()
isNaN()
NaN
Number()
parseFloat()
parseInt()
String()
undefined
unescape()

JS JSON
parse()
stringify()

JS Math
abs()
acos()
acosh()
asin()
asinh()
atan()
atan2()
atanh()
cbrt()
ceil()
clz32()
cos()
cosh()
E
exp()
expm1()
floor()
fround()
LN2
LN10
log()
log10()
log1p()
log2()
LOG2E
LOG10E
max()
min()
PI
pow()
random()
round()
sign()
sin()
sqrt()
SQRT1_2
SQRT2
tan()
tanh()
trunc()

JS Number
constructor
isFinite()
isInteger()
isNaN()
isSafeInteger()
MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
NaN
POSITIVE_INFINITY
prototype
toExponential()
toFixed()
toLocaleString()
toPrecision()
toString()
valueOf()

JS OperatorsJS RegExp
constructor
compile()
exec()
g
global
i
ignoreCase
lastIndex
m
multiline
n+
n*
n?
n{X}
n{X,Y}
n{X,}
n$
^n
?=n
?!n
source
test()
toString()

(x|y)
.
\w
\W
\d
\D
\s
\S
\b
\B
\0
\n
\f
\r
\t
\v
\xxx
\xdd
\uxxxx

JS Statements
break
class
continue
debugger
do…while
for
for…in
for…of
function
if…else
return
switch
throw
try…catch
var
while

JS String
charAt()
charCodeAt()
concat()
constructor
endsWith()
fromCharCode()
includes()
indexOf()
lastIndexOf()
length
localeCompare()
match()
prototype
repeat()
replace()
search()
slice()
split()
startsWith()
substr()
substring()
toLocaleLowerCase()
toLocaleUpperCase()
toLowerCase()
toString()
toUpperCase()
trim()
valueOf()

Форматирование чисел

В JavaScript отформатировать вывод числа в соответствии с региональными стандартами (языковыми настройками операционной системы) позволяет метод toLocaleString() .

Например, выполним форматирование числа в соответствии с региональными стандартами, которые установлены в системе по умолчанию:

Var number = 345.46;
console.log(number.toLocaleString()); //»345,46″

Например, выполним форматирование числа в соответствии с региональными стандартами России (ru):

Console.log((108.1).toLocaleString(«ru-RU»)); //»108,1″

Данный метод можно также использовать для форматирования числа в виде валюты:

Console.log((2540.125).toLocaleString(«ru-RU»,{style:»currency», currency:»RUB»})); //»2 540,13 ₽»
console.log((89.3).toLocaleString(«ru-RU»,{style:»currency», currency:»USD»})); //»89,30 $»
console.log((2301.99).toLocaleString(«ru-RU»,{style:»currency», currency:»EUR»})); //»2 301,99 €»

Представление числа в виде процентов:

Console.log((0.45).toLocaleString(«ru-RU»,{style:»percent»})); //»45 %»

Разбить число на разряды (свойство useGrouping):

Console.log((125452.32).toLocaleString(«ru-RU»,{useGrouping:true})); //»125 452,32″

Вывести с число с определённым количеством цифр (2) после запятой:

Console.log((1240.4564).toLocaleString(«ru-RU»,{minimumFractionDigits:2, maximumFractionDigits:2})); //»1 240,46″

Способы округления чисел

Для округления чисел придумано много способов, они не лишены недостатков, однако часто используются для решения задач. Разберёмся в тонкостях каждого из них.

Если используется стандартная библиотека math, то в начале кода её необходимо подключить. Сделать это можно, например, с помощью инструкции: .

math.ceil() – округление чисел в большую сторону

Функция получила своё имя от термина «ceiling», который используется в математике для описания числа, которое больше или равно заданному.

Любая дробь находится в целочисленном интервале, например, 1.2 лежит между 1 и 2. Функция определяет, какая из границ интервала наибольшая и записывает её в результат округления.

Пример:

math.ceil(5.15) # = 6
math.ceil(6.666) # = 7
math.ceil(5) # = 5

Важно помнить, что функция определяет наибольшее число с учётом знака. То есть результатом округления числа -0.9 будет 0, а не -1.

math.floor() – округление чисел в меньшую сторону

Функция округляет дробное число до ближайшего целого, которое меньше или равно исходному. Работает аналогично функции , но с округлением в противоположную сторону.

Пример:

math.floor(7.9) # = 7
math.floor(9.999) # = 9
math.floor(-6.1) # = -7

math.trunc() – отбрасывание дробной части

Возвращает целое число, не учитывая его дробную часть. То есть никакого округления не происходит, Python просто забывает о дробной части, приводя число к целочисленному виду.

Примеры:

math.trunc(5.51) # = 5
math.trunc(-6.99) # = -6

Избавиться от дробной части можно с помощью обычного преобразования числа к типу int. Такой способ полностью эквивалентен использованию .

Примеры:

int(5.51) # = 5
int(-6.99) # = -6

Нормальное округление

Python позволяет реализовать нормальное арифметическое округление, использовав функцию преобразования к типу int.

И хотя работает по другому алгоритму, результат её использования для положительных чисел полностью аналогичен выводу функции floor(), которая округляет числа «вниз». Для отрицательных аналогичен функции ceil().

Примеры:

math.floor(9.999) # = 9
int(9.999) # = 9
math.ceil(-9.999) # = -9
int(-9.999) # = -9

Чтобы с помощью функции int() округлить число по математическим правилам, необходимо добавить к нему 0.5, если оно положительное, и -0.5, если оно отрицательное.

Тогда операция принимает такой вид: int(num + (0.5 if num > 0 else -0.5)). Чтобы каждый раз не писать условие, удобно сделать отдельную функцию:

def int_r(num):
    num = int(num + (0.5 if num > 0 else -0.5))
    return num

Функция работает также, как стандартная функция округление во второй версии Python (арифметическое округление).

Примеры:

int_r(11.5) # = 12
int_r(11.4) # = 11
int_r(-0.991) # = -1
int_r(1.391) # = 1

round() – округление чисел

round() – стандартная функция округления в языке Python. Она не всегда работает так, как ожидается, а её алгоритм различается в разных версиях Python.

В Python 2

Во второй версии Python используется арифметическое округление. Оно обладает постоянно растущей погрешностью, что приводит к появлению неточностей и ошибок.

Увеличение погрешности вызвано неравным количеством цифр, определяющих, в какую сторону округлять. Всего 4 цифры на конце приводят к округлению «вниз», и 5 цифр к округлению «вверх».

Помимо этого, могут быть неточности, например, если округлить число 2.675 до второго знака, получится число 2.67 вместо 2.68. Это происходит из-за невозможности точно представить десятичные числа типа «float» в двоичном коде.

В Python 3

В третьей версии Python используется банковское округление. Это значит, что округление происходит до самого близкого чётного.

Такой подход не избавляет от ошибок полностью, но уменьшает шанс их возникновения и позволяет программисту добиться большей точности при вычислениях.

Примеры:

round(3.5) # = 4
round(9.5) # = 10
round(6.5) # = 6
round(-6.5) # = -6
round(-7.5) # = -8

Но если вам по каким то причинам нужно округление как в Python 2, то можно воспользоваться функцией написанной нами выше на основе приведения к целому числу.

Округление до сотых

У функции есть ещё один аргумент. Он показывает до какого количества знаков после запятой следует округлять. Таким образом, если нам надо в Python округлить до сотых, этому параметру следует задать значение 2.

Пример округления до нужного знака:

round(3.555, 2) # = 3.56
round(9.515,1) # = 9.5
round(6.657,2) # = 6.66

Relational functions #

Function Description
math.compare(x, y) Compare two values.
math.compareNatural(x, y) Compare two values of any type in a deterministic, natural way.
math.compareText(x, y) Compare two strings lexically.
math.deepEqual(x, y) Test element wise whether two matrices are equal.
math.equal(x, y) Test whether two values are equal.
math.equalText(x, y) Check equality of two strings.
math.larger(x, y) Test whether value x is larger than y.
math.largerEq(x, y) Test whether value x is larger or equal to y.
math.smaller(x, y) Test whether value x is smaller than y.
math.smallerEq(x, y) Test whether value x is smaller or equal to y.
math.unequal(x, y) Test whether two values are unequal.

Utils functions #

Function Description
math.clone(x) Clone an object.
math.hasNumericValue(x) Test whether a value is an numeric value.
math.isInteger(x) Test whether a value is an integer number.
math.isNaN(x) Test whether a value is NaN (not a number).
math.isNegative(x) Test whether a value is negative: smaller than zero.
math.isNumeric(x) Test whether a value is an numeric value.
math.isPositive(x) Test whether a value is positive: larger than zero.
math.isPrime(x) Test whether a value is prime: has no divisors other than itself and one.
math.isZero(x) Test whether a value is zero.
math.numeric(x) Convert a numeric input to a specific numeric type: number, BigNumber, or Fraction.
math.typeOf(x) Determine the type of a variable.

JavaScript

JS Array
concat()
constructor
copyWithin()
entries()
every()
fill()
filter()
find()
findIndex()
forEach()
from()
includes()
indexOf()
isArray()
join()
keys()
length
lastIndexOf()
map()
pop()
prototype
push()
reduce()
reduceRight()
reverse()
shift()
slice()
some()
sort()
splice()
toString()
unshift()
valueOf()

JS Boolean
constructor
prototype
toString()
valueOf()

JS Classes
constructor()
extends
static
super

JS Date
constructor
getDate()
getDay()
getFullYear()
getHours()
getMilliseconds()
getMinutes()
getMonth()
getSeconds()
getTime()
getTimezoneOffset()
getUTCDate()
getUTCDay()
getUTCFullYear()
getUTCHours()
getUTCMilliseconds()
getUTCMinutes()
getUTCMonth()
getUTCSeconds()
now()
parse()
prototype
setDate()
setFullYear()
setHours()
setMilliseconds()
setMinutes()
setMonth()
setSeconds()
setTime()
setUTCDate()
setUTCFullYear()
setUTCHours()
setUTCMilliseconds()
setUTCMinutes()
setUTCMonth()
setUTCSeconds()
toDateString()
toISOString()
toJSON()
toLocaleDateString()
toLocaleTimeString()
toLocaleString()
toString()
toTimeString()
toUTCString()
UTC()
valueOf()

JS Error
name
message

JS Global
decodeURI()
decodeURIComponent()
encodeURI()
encodeURIComponent()
escape()
eval()
Infinity
isFinite()
isNaN()
NaN
Number()
parseFloat()
parseInt()
String()
undefined
unescape()

JS JSON
parse()
stringify()

JS Math
abs()
acos()
acosh()
asin()
asinh()
atan()
atan2()
atanh()
cbrt()
ceil()
clz32()
cos()
cosh()
E
exp()
expm1()
floor()
fround()
LN2
LN10
log()
log10()
log1p()
log2()
LOG2E
LOG10E
max()
min()
PI
pow()
random()
round()
sign()
sin()
sqrt()
SQRT1_2
SQRT2
tan()
tanh()
trunc()

JS Number
constructor
isFinite()
isInteger()
isNaN()
isSafeInteger()
MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
NaN
POSITIVE_INFINITY
prototype
toExponential()
toFixed()
toLocaleString()
toPrecision()
toString()
valueOf()

JS OperatorsJS RegExp
constructor
compile()
exec()
g
global
i
ignoreCase
lastIndex
m
multiline
n+
n*
n?
n{X}
n{X,Y}
n{X,}
n$
^n
?=n
?!n
source
test()
toString()

(x|y)
.
\w
\W
\d
\D
\s
\S
\b
\B
\0
\n
\f
\r
\t
\v
\xxx
\xdd
\uxxxx

JS Statements
break
class
continue
debugger
do…while
for
for…in
for…of
function
if…else
return
switch
throw
try…catch
var
while

JS String
charAt()
charCodeAt()
concat()
constructor
endsWith()
fromCharCode()
includes()
indexOf()
lastIndexOf()
length
localeCompare()
match()
prototype
repeat()
replace()
search()
slice()
split()
startsWith()
substr()
substring()
toLocaleLowerCase()
toLocaleUpperCase()
toLowerCase()
toString()
toUpperCase()
trim()
valueOf()

Как проверить является ли переменная числом

Определить является ли значение переменной числом можно используя один из следующих способов:

1. С использованием функций isNaN и isFinite:

// myVar - переменная
if (!isNaN(parseFloat(myVar)) && isFinite(parseFloat(myVar))) {
  //myVar - это число или может быть приведено к нему
};

В виде функции:

// функция
function isNumeric(value) {
  return !isNaN(parseFloat(value)) && isFinite(parseFloat(value));
}
// использование
var myVar = '12px';
console.log(isNumeric(myVar)); //true

Этот способ позволяет определить является ли указанное значение числом или может быть приведено к нему. Данный вариант не считает числом пустую строку, строку из пробелов, значение , , , и .

2. С использованием оператора typeof и функций isFinite, isNaN:

// функция которая проверяет является ли значение числом
function isNumber(value) {
  return typeof value === "number" && 
    isFinite(value) && 
    !isNaN(value);
};
// использование функции isNumber
isNumber(18); //true
// использование функций для проверки текстовых значений
isNumber(parseFloat('')); //false
isNumber(parseFloat('Infinity')); //false
isNumber(parseFloat('12px')); //true

Эта функция определяет имеет ли указанное значение тип Number, а также не принадлежит ли оно к одному из специальных значений Infinity, -Infinity и NaN. Эсли это так, то данная функция возвращает значение true.

3. С помощью метода ECMAScript 6 . Данный метод позволяет определить, является ли указанное значение целым числом.

Number.isInteger('20'); //false, т.к. данный метод не выполняет перевод строки в число
Number.isInteger(20); //true, т.к. данное значение является числом

Великий и могучий Math

Глобальный объект Math включает в себя огромное количество разнообразных математических и тригонометрических функций. Это очень нужный объект и часто выручает разработчиков при работе с цифровыми данными.

На других платформах существуют аналогии Math. Например, в таких популярных языках, как Java и C#, Math представляет собой класс, который поддерживает все те же стандартные функции. Так что как видите этот инструмент действительно великий и могучий.

Теперь я хочу пройтись по конкретным методам, отвечающим за округление, и подробно о них рассказать.

Math.floor ()

Начну с Math.floor

Обратите внимание на наименование метода. Логически становится понятно, что раз речь идет об округлении, а дословный перевод слова «floor» означает «пол», то данный инструмент округлит обрабатываемые значения в меньшую строну

Также возможен вариант, когда обработанное число с помощью этой функции осталось прежним. Все потому, что округление осуществляется по нестрогому неравенству (<=). Таким образом, при отработке этой строчки кода:

в ответе будет число 4.

Math.ceil ()

Опять-таки посмотрите на название (в такой способ материал быстрее усваивается). Если кто-то не знает, то «ceil» означает «потолок». Значит округление числовых данных будет осуществляться в большую сторону, используя нестрогое неравенство (>=).

Как вы уже догадались, в ответе будет число 5.

Math.round ()

Данный метод округляет дробное число до ближайшего целого. Так, если дробная часть находится в диапазоне от 0 и до 0.5 не включительно, то округление происходит к меньшему значению. А если дробная часть находится в диапазоне от включительно 0.5 и до следующего целого числа, то она округляется к большему целому.

Надеюсь, все подумали или сказали правильный ответ – 5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector