Виды протоколов в сети интернет: какой протокол является базовым

Версия 6

Основная статья: IPv6

С 1996 года вводится в эксплуатацию шестая версия протокола — IPv6, которая позволяет адресовать значительно большее количество узлов, чем IPv4. Адресное пространство IPv6 составляет 2128. Такое большое адресное пространство было введено ради иерархичности адресов (это упрощает маршрутизацию). Тем не менее, увеличенное пространство адресов сделает NAT необязательным. Классическое применение IPv6 (по сети /64 на абонента; используется только unicast-адресация) обеспечит возможность использования более 300 млн IP-адресов на каждого жителя Земли. Эта версия отличается повышенной разрядностью адреса, встроенной возможностью шифрования и некоторыми другими особенностями[какими?]. Долгий переход с IPv4 на IPv6 связан с трудоёмкой работой операторов связи и производителей программного обеспечения и не может быть выполнен в один момент. К осени 2013 года в Интернете присутствовало более 14000 сетей, работающих по протоколу IPv6. Для сравнения, к середине 2010 года в адресном пространстве IPv4 присутствовало более 320 тысяч сетей, но в IPv6 сети гораздо более крупные, нежели в IPv4.

Адреса сетевых сервисов

Для некоторых типов сервисов интернет, можно указывать не только IP адрес, но и порт на котором этот сервис работает. Для этого используются DNS записи типа SRV (Service record). Структуры этой записи достаточно сложны, вместо доменного имени указывается строка с описанием сервисов в специальном формате (_сервис._протокол.имя.-˃ приоритет вес порт имя).

Например, если мы хотим узнать на каком компьютере и на каком порту работает jabber сервер работающий по протоколу tcp в домене example.com мы получим вот такую запись (0 5 5269 xmpp.example.com). Проще всего разбирать её с конца. Сервис работает на компьютере с доменным именем xmpp.example.com порт 5269, приоритет 0, вес 5. Так же как и с почтовыми серверами, чем меньше значение приоритета, тем более высокий приоритет у сервера.

Резервный jabber сервер для этого домена работает на компьютере backup_xmpp.xample.com порт 5269 приоритет 20, вес 0. Вес используются для распределения нагрузки между разными серверами, которые имеют один и тот же приоритет.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP-адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска — это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255. При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254. А сеть 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127. Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252. Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Свойства

IP объединяет сегменты сети в единую сеть, обеспечивая доставку пакетов данных между любыми узлами сети через произвольное число промежуточных узлов (маршрутизаторов). Он классифицируется как протокол сетевого уровня по сетевой модели OSI. IP не гарантирует надёжной доставки пакета до адресата — в частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (приходят две копии одного пакета), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прийти вовсе. Гарантию безошибочной доставки пакетов дают некоторые протоколы более высокого уровня — транспортного уровня сетевой модели OSI, — например, TCP, которые используют IP в качестве транспорта.

Фрагментация IP пакетов

При доставке IP пакета он проходит через разные каналы доставки. Возможно возникновение ситуации, когда размер пакета превысит возможности узла системы связи. В этом случае протокол предусматривает возможность дробления пакета на уровне IP в процессе доставки. Соответственно, к конечному получателю пакет придет в виде нескольких пакетов, которые необходимо собрать в один перед дальнейшим анализом. Возможность дробления пакета с последующей сборкой называется IP фрагментацией.

В протоколе предусмотрена возможность запрещения фрагментации конкретного пакета. Если такой пакет нельзя передать через сегмент связи целиком, то он уничтожается, а отправителю направляется ICMP сообщение о проблеме.

IP-адрес

Каждый узел в сети TCP/IP может быть идентифицирован 32-битным IP-адресом. Обычно IP-адрес представляется четырьмя десятичными значениями в таком виде: 192.168.0.1. Каждое из этих чисел представляет собой один байт IP-адреса и может находиться в пределах от 0 до 255.

IP-адрес содержит две части: сетевую часть и часть хоста. В зависимости от класса сети сетевая часть состоит из одного, двух или трех байтов:

Класс Байт 1 Байт 2 Байт 3 Байт 4
A Сеть (1—126) Хост (0-255) Хост (0—255) Хост (0—255)
B Сеть (128—191) Сеть (0—255) Хост (0—255) Хост (0—255)
C Сеть (192—223) Сеть (0—255) Сеть (0—255) Хост (0—255)

Первый бит адреса сети класса А должен быть 0, поэтому первый байт для сети класса А имеет двоичные значения в пределах от 00000001 (1) до 01111110 (126). Остальные три байта служат для идентификации узлов в сети, позволяя соединить в сети класса А более 16 млн. устройств.

Заметим, что в приведенной таблице адреса с числом 127 в первом байте пропущены, поскольку это зарезервированный диапазон адресов. Адрес 127.0.0.1 — это всегда адрес локального хоста, а 127.0.0.0 — адрес локальной обратной связи. Обратная связь используется для тестирования стека сетевых протоколов на одной машине, без прохода через сетевую интерфейсную плату.

В IP-адресе для сети класса В первые два бита всегда имеют значение 10, что дает диапазон от 10000000 (128) до 10111111 (191). Второй байт продолжает идентификацию сети значением от 0 до 255, оставляя два последних байта для идентификации узлов сети, всего до 65 534 устройств.

Сети класса С отличаются IP-адресом, в котором в первых трех битах установлено значение 110, разрешая значения в диапазоне от 11000000 (192) до 11011111 (223). В сети этого типа лишь один байт оставлен для идентификации узлов, поэтому к ней можно подсоединить только 254 устройства.

Число устройств, которое можно подсоединить к сети каждого из этих классов с особыми IP-адресами, обратно пропорционально числу возможных сетей этого типа. Например, сеть класса А, допуская 16 млн. хостов, оставляет только часть первого байта для идентификации сети. В результате во всем мире может существовать лишь 126 сетей класса А. Только крупные компании, подобные
AT & Т, IBM, Xerox и HP, имеют такой сетевой адрес. Когда компания запрашивает IP-сеть в органе, ведающем сетями, обычно она получает сеть класса С.

Если компания пожелает, чтобы больше хостов напрямую были подключены к Интернету, можно найти еще одну сеть класса С. Если для каждого хоста в сети не требуется прямого доступа к Интернету, можно использовать частный IP-адрес, и тогда применяется другая опция.

Сетевые адреса классов А, В и С оставляют свободными адреса, имеющие в первом байте значения от 224 до 255.

Агентство IANA выделяет номера сетей и публикует их перечень на странице http://www.iana.org/assignments/ipv4-adclress-space. Почти во всех странах есть региональные регистрационные ведомства, выдающие по запросам номера сетей. Региональные ведомства получают диапазон сетей от IANA.

Чтобы избежать исчерпания IP-адресов, хосты, не соединенные напрямую с Интернетом, могут использовать адреса из диапазонов частных адресов. Частные адреса уникальны не глобально, а только локально, внутри сети. Во всех классах сетей резервируются определенные диапазоны, которые могут использоваться как частные адреса хостами, не требующими непосредственного двустороннего доступа к Интернету. Такие хосты вполне могут обращаться к Интернету через шлюз, который не посылает во внешнюю сеть частный IP-адрес.

Версия 4

Основная статья: IPv4

В современной сети Интернет используется IP четвёртой версии, также известный как IPv4. В протоколе IP этой версии каждому узлу сети ставится в соответствие IP-адрес длиной 4 октета (4 байта). При этом компьютеры в подсетях объединяются общими начальными битами адреса. Количество этих бит, общее для данной подсети, называется маской подсети (ранее использовалось деление пространства адресов по классам — A, B, C; класс сети определялся диапазоном значений старшего октета и определял число адресуемых узлов в данной сети, сейчас используется бесклассовая адресация).

Пример: IP-пакет

IP-пакеты состоят из заголовка и полезной нагрузки. Заголовок пакета IPv4 состоит из:

  1. 4 бита содержат версию пакета: IPv4 или IPv6.
  2. 4 бита содержат длину интернет-заголовка, которая измеряется отрезками по 4 байта (например, 5 означает 20 байт).
  3. 8 бит содержат тип обслуживания, известный также как качество обслуживания (QoS), описывающее приоритеты пакета.
  4. 16 бит содержат длину пакета в байтах.
  5. 16 бит содержат тег идентификации, помогающий восстановить пакет из нескольких фрагментов.
  6. 3 бита содержат нуль, флаг разрешения фрагментации пакета (DF: не фрагментировать), а также флаг разрешения дальнейшей фрагментации (MF: фрагментировать дальше).
  7. 13 бит содержат смещение фрагмента, поле для идентификации положение фрагмента в исходном пакете.
  8. 8 бит содержат время жизни (TTL), которое определяет количество переходов (через маршрутизаторы, компьютеры и сетевые устройства), разрешённых сделать пакету, прежде чем он исчезнет (например, пакету с TTL 16 разрешено пройти не более 16 маршрутизаторов, чтобы добраться до места назначения).
  9. 8 бит содержат протокол (TCP, UDP, ICMP и т. д.).
  10. 16 бит содержат контрольную сумму заголовка, используемую при обнаружении ошибок.
  11. 32 бит содержат IP-адрес источника.
  12. 32 бит содержат адрес назначения.

После этих данных могут быть добавлено разное количество необязательных флагов, меняющихся в зависимости от используемого протокола, затем идут данные, которые переносит пакет. IP-пакет не имеет хвостового прицепа. Однако, IP-пакеты часто переносятся как полезная нагрузка внутри фрейма Ethernet, который имеет свой собственный заголовок и хвост.

Доставка не гарантируется

Многие сети не гарантируют доставку, отсутствие дубликатов пакетов и порядок их доставки, как например, протокол UDP в сети Интернет. Тем не менее, это можно сделать в верхней части пакета услуг транспортного уровня, который может обеспечить такую защиту. TCP и UDP являются лучшими примерами 4-го транспортного уровня, одного из семи уровней сетевой модели OSI.

Заголовок пакета определяет тип данных, номер пакета, общее количество пакетов и IP-адреса отправителя и получателя.

Иногда используется термин «кадр» для обозначения пакетов в точности так, как он используется при передаче сигнала по проводам или радио.

IPv6

Протокол, предшествовавший Internet Protocol, был разработан Управлением перспективных исследовательских работ Министерства обороны США (DARPA) в 1960-х годах, а набор протоколов TCP/IP получил признание лишь в 1980 г. Поскольку IP базировался на существовавших сетевых протоколах DARPA, он получил номер версии 4 и теперь известен как IPv4. В те времена, когда человечество в большинстве своем представляло себе мобильный телефон как трубку, которую можно снимать со стены и переносить к дивану, число хостов, поддерживаемых IP, казалось более чем достаточным.

Однако сегодня все хотят подключить к Интернету холодильники и газонокосилки, и IETF разработало новую версию IP — IPv6

Наиболее важное изменение этой версии по сравнению с IPv4 заключается в использовании для адресации не 32, а 128 битов, что позволит всем Tablet PC, Pocket PC, мобильным телефонам, телевизорам, автомобилям, газонокосилкам, кофеваркам и мусорным контейнерам стать полноправными хостами Интернета. 🙂

Кроме возможности назначить адрес почти каждому атому в Солнечной системе, в IPv6 появляется еще несколько полезных изменений:

  • Возможности расширенной адресации. Чтобы определить диапазон адресов групповой рассылки, в адреса IPv6 может включаться маршрутная информация о группах. Кроме того, появляется альтернативный адрес для отправки сообщения любому хосту или любой группе хостов.

  • Упрощение формата заголовка. Некоторые поля заголовка IPv4 удаляются, другие становятся необязательными. Однако полная длина заголовка IPv6 больше, чем в IPv4 из-за 128-битных адресов источника и назначения.

  • Улучшенная поддержка расширяемости. В будущем добавлять расширения к протоколу IPv6 станет легче. Ограничения на длину для опций удалено.

  • Маркирование потока. Для конкретных потоков трафика добавляется новая возможность. Поток — это последовательность пакетов, перемещающаяся от источника к назначению. В новом протоколе приложения могут предлагать аудио- и видеовозможности в реальном времени по различным потокам. Каждый поток может запрашивать обработку в реальном времени или особо качественную обработку у маршрутизаторов, через которые он распространяется.

  • Аутентификация и секретность. Добавляются расширения IPv6, поддерживающие аутентификацию, секретность и конфиденциальность отправляемых данных.

Сравнение уровней TCP / IP и OSI

Три верхних уровня в модели OSI, то есть прикладной уровень, уровень представления и уровень сеанса, не различаются отдельно в модели TCP / IP, которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые приложения с чистым протоколом OSI, такие как X.400 , также комбинируют их, нет требования, чтобы стек протоколов TCP / IP налагал монолитную архитектуру над транспортным уровнем. Например, протокол приложения NFS работает поверх протокола представления внешних данных (XDR), который, в свою очередь, работает через протокол, называемый удаленным вызовом процедур (RPC). RPC обеспечивает надежную передачу записей, поэтому он может безопасно использовать оптимальную передачу UDP.

Различные авторы интерпретировали модель TCP / IP по-разному и расходятся во мнениях относительно того, охватывает ли канальный уровень или вся модель TCP / IP проблемы уровня 1 OSI ( физического уровня ), или же аппаратный уровень предполагается ниже канального уровня.

Некоторые авторы пытались включить уровни 1 и 2 модели OSI в модель TCP / IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU ). Это часто приводит к модели с пятью уровнями, где уровень канала или уровень доступа к сети разделен на уровни 1 и 2 модели OSI.

Например, уровни сеанса и представления пакета OSI считаются включенными в прикладной уровень пакета TCP / IP. Функциональные возможности сеансового уровня можно найти в таких протоколах, как HTTP и SMTP, и более очевидны в таких протоколах, как Telnet и Session Initiation Protocol (SIP). Функциональность сеансового уровня также реализована с помощью нумерации портов протоколов TCP и UDP, которые покрывают транспортный уровень в пакете TCP / IP. Функции уровня представления реализованы в приложениях TCP / IP со стандартом MIME при обмене данными.

Конфликты очевидны также в исходной модели OSI, ISO 7498, если не рассматривать приложения к этой модели, например, структуру управления ISO 7498/4 или внутреннюю организацию сетевого уровня ISO 8648 (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом, IONL обеспечивает структуру для «средств конвергенции, зависящих от подсети», таких как ARP и RARP .

Протоколы IETF могут быть рекурсивно инкапсулированы, что демонстрируется протоколами туннелирования, такими как Generic Routing Encapsulation (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне.

Протокол RIST

Через год после появления Альянса SRT компании, имеющие корпоративные решения в области IP-доставки, создали еще один альянс для разработки более продвинутой технологии. Новый протокол получил название Reliable Internet Stream Transport (RIST), как и сам альянс. Он организован в рамках консорциума Video Services Forum, занимающегося разработкой и стандартизацией сетевых технологий для передачи медиа. К слову, в этот альянс в качестве ключевого участника
и Haivision.

RIST задуман как многопрофильный стандарт, однако пока выпущен только базовый профиль. По функциональности он уступает SRT. В частности, не поддерживает мультиплексирование каналов на одном UDP-порту и имеет только один режим установления соединения (Push). В результате для передачи каждого потока приходится открывать по UDP-порту на приемнике и на передатчике. Кроме того, в отличие от SRT, базовый профиль RIST не поддерживает шифрование и файловую передачу. В то же время в протокол заложена передача множественных каналов. Она реализована в двух режимах. Один поддерживает разбиение логического канала на несколько физических, отправляемых разными маршрутами. Второй обеспечивает резервирование потоков и бесшовное переключение с одного на другой.

А схожи SRT и базовая версия RIST в том, что оба используют ARQ с настраиваемым соотношением между задержкой и защищенностью. Кроме того, они практически одинаковы в плане мониторинга потоков и сбора статистики. Однако у RIST есть все шансы опередить конкурента. Уже подготовлен основной профиль протокола, и живую демонстрацию его работы можно было увидеть на IBC-2019. При разработке профиля учитывались разные сценарии его применения, в том числе дистанционные интервью, сбор новостей из удаленных точек, передача видео в облако и передача мультикастовых трансляций.

Перечислим основные усовершенствования, появившиеся в этом профиле. Во-первых, добавилась поддержка мультиплексирования потоков на одном UDP-порту. Во-вторых, реализовано GRE-туннелированние (Generic Routing Encapsulation). GRE-шлюзы могут использоваться для организации двухстороннего обмена между RIST-устройствами базовой версии, умеющими взаимодействовать только в режиме Push. Шлюзы также могут применяться для передачи управляющих данных, например SNMP, для туннелирования мультикастового трафика и решения других задач. В-третьих, добавлены механизмы скремблирования, авторизации и аутентификации. Для скремблирования и авторизации выбран протокол DTLS, другими словами, версия TLS для UDP-протокола. Она адаптирована для приложений, чувствительных к временным задержкам. В рамках TLS могут использоваться разные алгоритмы шифрования, но в качестве основных для RIST предложены AES 128/256 бит.

Из других улучшений отметим оптимизацию транспортной полосы за счет исключения нулевых пакетов. Они не несут информации, но нужны для сохранения синхронизации. Поэтому перед передачей они заменяются метками и восстанавливаются на приемной стороне. Кроме того, добавлена возможность расширить заголовок RTP для увеличения цикла нумерации пакетов. Эта нумерация используется в ARQ при запросе потерянных пакетов, а при высокой скорости передачи стандартного цикла может не хватить.

Перспективы сосуществования SRT и RIST пока непонятны. С учетом того, что Haivision оказался одним из основных участников RIST, не исключен вариант слияния протоколов. Но может быть, каждый из них найдет свою нишу. Ясно одно — транспортные технологии для передачи видео через IP-сети с негарантированным качеством будут и дальше активно развиваться, а их доля во всех сегментах передачи медиа будет расти.

Версия 4

Основная статья: IPv4

В современной сети Интернет используется IP четвёртой версии, также известный как IPv4. В протоколе IP этой версии каждому узлу сети ставится в соответствие IP-адрес длиной 4 октета (4 байта). При этом компьютеры в подсетях объединяются общими начальными битами адреса. Количество этих бит, общее для данной подсети, называется маской подсети (ранее использовалось деление пространства адресов по классам — A, B, C; класс сети определялся диапазоном значений старшего октета и определял число адресуемых узлов в данной сети, сейчас используется бесклассовая адресация).

Реализации

Набор интернет-протоколов не предполагает наличия какой-либо конкретной аппаратной или программной среды. Для этого требуется только наличие аппаратного и программного обеспечения, способного отправлять и получать пакеты в компьютерной сети. В результате пакет был реализован практически на каждой вычислительной платформе. Минимальная реализация TCP / IP включает в себя следующее: Интернет-протокол (IP), протокол разрешения адресов (ARP), протокол управляющих сообщений Интернета (ICMP), протокол управления передачей (TCP), протокол дейтаграмм пользователя (UDP) и управление группами Интернета. Протокол (IGMP). В дополнение к IP, ICMP, TCP, UDP, Интернет-протокол версии 6 требует протокола обнаружения соседей (NDP), ICMPv6 и IGMPv6 и часто сопровождается интегрированным уровнем безопасности IPSec .

Прикладных программистов обычно интересуют только интерфейсы на прикладном уровне, а часто и на транспортном уровне, в то время как нижележащие уровни представляют собой услуги, предоставляемые стеком TCP / IP в операционной системе. Большинство реализаций IP доступны программистам через сокеты и API .

Уникальные реализации включают облегченный TCP / IP , стек с открытым исходным кодом , разработанный для встроенных систем , и KA9Q NOS , стек и связанные протоколы для любительских систем пакетной радиосвязи и персональных компьютеров, подключенных через последовательные линии.

Прошивка микроконтроллера в сетевом адаптере обычно решает проблемы со связью, поддерживаемые программным обеспечением драйвера в операционной системе. Непрограммируемая аналоговая и цифровая электроника обычно отвечает за физические компоненты ниже канального уровня, обычно используя набор микросхем интегральной схемы для конкретного приложения (ASIC) для каждого сетевого интерфейса или другого физического стандарта. Высокопроизводительные маршрутизаторы в значительной степени основаны на быстрой непрограммируемой цифровой электронике, выполняющей переключение на уровне каналов.

Пакет

IP-пакет — форматированный блок информации, передаваемый по компьютерной сети, структура которого определена протоколом IP. В отличие от них, соединения компьютерных сетей, которые не поддерживают IP-пакеты, такие как традиционные соединения типа «точка-точка» в телекоммуникациях, просто передают данные в виде последовательности байтов, символов или битов. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

Версия 4 (IPv4)

Октет 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия IHL Differentiated Services Code Point ECN Длина пакета
4 Идентификатор Флаги Смещение фрагмента
8 Время жизни (TTL) Протокол Контрольная сумма заголовка
12 IP-адрес отправителя
16 IP-адрес получателя
20 Параметры (от 0 до 10-и 32-х битных слов)
  Данные
  • Версия — для IPv4 значение поля должно быть равно 4.
  • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных (англ. payload — полезный груз) в пакете. Минимальное корректное значение для этого поля равно 5.
  • Длина пакета — (Total Length) длина пакета в октетах, включая заголовок и данные. Минимальное корректное значение для этого поля равно 20, максимальное — 65 535.
  • Идентификатор — (Identification) значение, назначаемое отправителем пакета и предназначенное для определения корректной последовательности фрагментов при сборке пакета. Для фрагментированного пакета все фрагменты имеют одинаковый идентификатор.
  • 3 бита флагов. Первый бит должен быть всегда равен нулю, второй бит DF (don’t fragment) определяет возможность фрагментации пакета и третий бит MF (more fragments) показывает, не является ли этот пакет последним в цепочке пакетов.
  • Смещение фрагмента — (Fragment Offset) значение, определяющее позицию фрагмента в потоке данных. Смещение задается количеством восьмибайтовых блоков, поэтому это значение требует умножения на 8 для перевода в байты.
  • Время жизни (TTL) — число маршрутизаторов, которые может пройти этот пакет. При прохождении маршрутизатора это число уменьшается на единицу. Если значение этого поля равно нулю, то пакет должен быть отброшен, и отправителю пакета может быть послано сообщение Time Exceeded (ICMP тип 11 код 0).

Версия 6 (IPv6)

Позиция в октетах 1 2 3
Позиция в битах 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия Класс трафика
4 32 Длина полезной нагрузки След. заголовок Число переходов
8 64 IP-адрес отправителя
12 96
16 128
20 160
24 192 IP-адрес получателя
28 224
32 256
36 288
  • Версия — для IPv6 значение поля должно быть равно 6.
  • Класс трафика — определяет приоритет трафика (QoS, класс обслуживания).
  • Метка потока — уникальное число, одинаковое для однородного потока пакетов.
  • Длина полезной нагрузки — длина данных в октетах (заголовок IP-пакета не учитывается).
  • Следующий заголовок — задаёт тип расширенного заголовка (англ. IPv6 extension), который идёт следующим. В последнем расширенном заголовке поле Next header задаёт тип транспортного протокола (TCP, UDP и т. д.) и определяет следующий инкапсулированный уровень.
  • Число переходов — максимальное число маршрутизаторов, которые может пройти пакет. При прохождении маршрутизатора это значение уменьшается на единицу и по достижении нуля пакет отбрасывается.

Транспортный уровень

Транспортный уровень устанавливает основные каналы данных, которые приложения используют для обмена данными для конкретных задач. Уровень устанавливает соединение между хостами в форме услуг сквозной передачи сообщений, которые не зависят от базовой сети и от структуры пользовательских данных и логистики обмена информацией. Возможности подключения на транспортном уровне можно разделить на две категории: ориентированные на установление соединения , реализованные в TCP, или не связанные с установлением соединения , реализованные в UDP. Протоколы в этом слое могут обеспечить контроль ошибок , сегментацию , управление потоком , управление перегрузкой и применение адресации ( номера портов ).

С целью предоставления специфичных для процесса каналов передачи для приложений, уровень устанавливает понятие сетевого порта . Это пронумерованная логическая конструкция, выделенная специально для каждого из каналов связи, необходимых приложению. Для многих типов служб эти номера портов были стандартизированы, чтобы клиентские компьютеры могли обращаться к конкретным службам серверного компьютера без участия службы обнаружения или служб каталогов .

Поскольку IP обеспечивает доставку только с максимальной эффективностью , некоторые протоколы транспортного уровня обеспечивают надежность.

TCP — это протокол, ориентированный на соединение, который решает многочисленные проблемы надежности при обеспечении надежного потока байтов :

  • данные поступают по порядку
  • данные имеют минимальную ошибку (т.е. правильность)
  • повторяющиеся данные отбрасываются
  • потерянные или отброшенные пакеты повторно отправляются
  • включает контроль заторов на дорогах

Новый протокол передачи управления потоком (SCTP) также является надежным транспортным механизмом с установлением соединения. Он ориентирован на поток сообщений, а не на поток байтов, как TCP, и обеспечивает несколько потоков, мультиплексированных по одному соединению. Она также обеспечивает Многодомность поддержку, в котором соединительный конец может быть представлен несколькими IP — адресами (представляющих несколько физических интерфейсов), так что , если один выходит из строя, соединение не прерывается. Первоначально он был разработан для приложений телефонии (для передачи SS7 по IP).

Надежность также может быть достигнута за счет использования IP по надежному протоколу передачи данных, например High-Level Data Link Control (HDLC).

User Datagram Protocol (UDP) является установление соединения дейтаграммы протокола. Как и IP, это ненадежный протокол, требующий максимальных усилий. Надежность достигается путем обнаружения ошибок с использованием алгоритма контрольной суммы. UDP обычно используется для таких приложений, как потоковая передача мультимедиа (аудио, видео, передача голоса по IP и т

Д.), Где своевременное поступление более важно, чем надежность, или для простых приложений запросов / ответов, таких как поиск DNS , где накладные расходы на настройку надежное соединение непропорционально велико. Транспортный протокол реального времени (RTP) — это протокол дейтаграмм, который используется поверх UDP и предназначен для данных в реальном времени, таких как потоковая передача мультимедиа .

Приложения на любом заданном сетевом адресе различаются по их TCP- или UDP-порту. По соглашению, некоторые хорошо известные порты связаны с конкретными приложениями.

Транспортный уровень модели TCP / IP или уровень хост-хост примерно соответствует четвертому уровню в модели OSI, также называемому транспортным уровнем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector